Physician Cost Profiling — Reliability and Risk of Misclassification

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Physician Cost Profiling-Reliability and Risk of Misclassification: Detailed Methodology and Sensitivity Analyses.

This article describes the methods and sensitivity analyses used by the authors in an article published in the New England Journal of Medicine. Purchasers are experimenting with a variety of approaches to control health care costs, including limiting network contracts to lower-cost physicians and offering patients differential copayments to encourage them to visit "high-performance" (i.e., high...

متن کامل

the study of practical and theoretical foundation of credit risk and its coverage

پس از بررسی هر کدام از فاکتورهای نوع صنعت, نوع ضمانت نامه, نرخ بهره , نرخ تورم, ریسک اعتباری کشورها, کارمزد, ریکاوری, gdp, پوشش و وثیقه بر ریسک اعتباری صندوق ضمانت صادرات ایران مشخص گردید که همه فاکتورها به استثنای ریسک اعتباری کشورها و کارمزد بقیه فاکتورها رابطه معناداری با ریسک اعتباری دارند در ضمن نرخ بهره , نرخ تورم, ریکاوری, و نوع صنعت و ریسک کشورها اثر عکس روی ریسک اعتباری داردو پوشش, وثی...

15 صفحه اول

Is Physician Cost Profiling Ready for Prime Time?

P assage of health care reform legislation by the 111th Congress represents major progress in reducing the number of the uninsured. Now the focus of policy discussion is likely to turn quickly from issues of coverage to the challenge of controlling health care costs. Purchasers have been experimenting for some time with different approaches to reining in costs (consumer cost sharing, managed ca...

متن کامل

AdaCost: Misclassification Cost-Sensitive Boosting

AdaCost, a variant of AdaBoost, is a misclassification cost-sensitive boosting method. It uses the cost of misclassifications to update the training distribution on successive boosting rounds. The purpose is to reduce the cumulative misclassification cost more than AdaBoost. We formally show that AdaCost reduces the upper bound of cumulative misclassification cost of the training set. Empirical...

متن کامل

Test cost and misclassification cost trade-off using reframing

Many solutions to cost-sensitive classification (and regression) rely on some or all of the following assumptions: we have complete knowledge about the cost context at training time, we can easily re-train whenever the cost context changes, and we have technique-specific methods (such as cost-sensitive decision trees) that can take advantage of that information. In this paper we address the pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: New England Journal of Medicine

سال: 2010

ISSN: 0028-4793,1533-4406

DOI: 10.1056/nejmsa0906323